Supplementary File #### **Supplementary Figure 1** #### **Supplementary Figure 1.** p62:Nrf2 double-knockout (DKO) mice exhibited increased liver mass, visceral fat accumulation, and obesity. **(A)** Liver mass in wild-type (WT), Nrf2-knockout (KO), p62-KO, and DKO mice at 30 weeks of age (n = 8 per group). **(B)** Computed tomography (CT) analysis of the weight of white adipose tissue (WAT) and visceral fat content in WT, Nrf2-KO, p62-KO, and DKO mice at 30 weeks of age (n = 8 per group). For CT analysis of body fat composition, mice were anesthetized with isoflurane and scanned using a Latheta micro-CT scanner (LCT-200, Hitachi Aloka Medical, Tokyo, Japan). Results are presented as the mean \pm SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. *P<0.05, significantly different from the WT group; $^{\dagger}P$ <0.05, significantly different from the Nrf2-KO group; $^{\S}P$ <0.05, significantly different from the P #### **Supplementary Figure 2.** p62:Nrf2 double-knockout (DKO) mice exhibited severe inflammation in the liver and visceral fat tissue with aging. (A) Hematoxylin and eosin (H&E)-stained and sirius red-stained sections of representative liver specimens from wild-type (WT), Nrf2-knockout (KO), p62-KO, and DKO mice at 50 weeks of age (scale bar, 100 μm). (B) Immunostaining with 4-hydroxy-2-nonenal (4-HNE) was performed to determine the presence of lipid peroxides (scale bar, 100 μ m). (C) H&E-stained sections of representative visceral fat tissue specimens at 30 weeks of age (scale bar, 100 μ m). #### **Supplementary Figure 3.** Deficiency of Nrf2 in Caco-2 cells reduced the expression of *Zo-1* of tight junction proteins. **(A)** Relative expression levels of intestine zona occludens-1 (*Zo-1*), *claudin 1*, and *claudin 2* mRNA in wild-type (WT), *Nrf2*-knockout (KO), *p62*-KO, and DKO mice at 8 weeks of age (n = 8 per group). **(B)** Relative expression levels of *Zo-1* and *claudin 1* mRNA in WT, *Nrf2*-KO, and *p62*-KO Caco-2 cells (n = 5 per group). mRNA expression levels were calculated as the ratio relative to that in WT. Results are presented as the mean \pm SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. **P*<0.05, significantly different from the WT group; †*P*<0.05, significantly different from the *P62*-KO group. #### **Supplementary Figure 4.** The number of Kupffer cells in p62:Nrf2 double-knockout (DKO) mice did not change at 8 weeks of age. Immunostaining with F4/80 was performed to determine the presence of Kupffer cells (scale bar, 50 µm). F4/80-positive areas in the livers of wild-type (WT), Nrf2-knockout (KO), p62-KO, and DKO mice (n = 8 per group). Results are presented as the mean \pm SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. *P<0.05, significantly different from the WT group; $^{\dagger}P$ <0.05, significantly different from the p62-KO group. #### **Supplementary Figure 5.** Probiotics improved nonalcoholic steatohepatitis (NASH) in p62:Nrf2 gene double-knockout (DKO) mice. **(A)** PCR of *Bifidobacterium infantis* and *Streptococcus thermophilus* in feces. **(B)** Fecal and serum lipopolysaccharide (LPS) levels in WT, *ad libitum* DKO, and probiotics mice (n = 8 per group). **(C)** Hematoxylin and eosin (H&E)- and sirius red-stained sections of representative liver specimens from the *ad libitum* DKO and probiotics groups at 25 weeks of age (scale bar, 100 μ m). Results are presented at the mean \pm SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. *P<0.05, significantly different from the *ad libitum* DKO group. # Supplementary Table 1. Antibodies for immunoblotting, immunohistochemistry, and flow cytometry. | Antibodies | Manufacturer | Cat No. | |---|---------------------------|------------| | Rabbit polyclonal anti-p62 | Ishii et al., 2000 | N/A | | Rabbit polyclonal anti-Nrf2 | Proteintech | 16396-1-AP | | Rabbit polyclonal anti-actin | Sigma-Aldrich | A5060 | | Rabbit polyclonal anti-Lamin A/C | Cell Signaling Technology | 2032 | | Rabbit monoclonal anti-NF-κB p65 phospho | Cell Signaling Technology | 3033 | | Rabbit monoclonal anti-NF-κB p65 | Cell Signaling Technology | 4764 | | Rabbit polyclonal anti-Keap1 | Cell Signaling Technology | 4617S | | Rabbit polyclonal anti-Zo-1 | Thermo Fisher Scientific | 61-7300 | | Mouse monoclonal anti-claudin 1 | Thermo Fisher Scientific | 37-4900 | | Mouse monoclonal anti-claudin 2 | Thermo Fisher Scientific | 32-5600 | | Mouse monoclonal anti-4-hydroxy-2-nonenal | JaiCA | MHN-100P | | Rabbit polyclonal anti-glutathione S-transferase P1 | MBL | 311 | | Sheep anti-mouse IgG, HRP-linked whole Ab | GE Healthcare | NA931 | | Donkey anti-rabbit IgG, HRP-linked whole Ab | GE Healthcare | NA934 | | Rat monoclonal APC-conjugated anti-F4/80 | Thermo Fisher Scientific | 17-4801-82 | | PerCP/Cy5.5 anti-mouse CD206 | BioLegend | 141715 | | PE anti-mouse CD11c | BioLegend | 117307 | | Rat monoclonal anti-mouse MARCO | BIO-RAD | MCA1849 | | Goat polyclonal anti-mouse SR-A1 | R&D Systems | AF1797 | | Goat anti-rat IgG, Alexa Fluor 488 | Thermo Fisher Scientific | A-11006 | | Donkey anti-goat IgG, Alexa Fluor 488 | Thermo Fisher Scientific | A-11055 | ### Supplementary Table 2. Primers for real-time PCR analysis. | Genes | Primer sequences (5'- 3') | | | |--------------------|---------------------------|--------------------------|--| | | Forward | Reverse | | | Tnf-α | AAGCCTGTAGCCCACGTCGTA | GGCACCACTAGTTGGTTGTCTTTG | | | Il-1β | TCCAGGATGAGGACATGAGCAC | GAACGTCACACACCAGCAGGTTA | | | Il-6 | GAGGATACCACTCCCAACAGACC | AAGTGCATCATCGTTGTTCATACA | | | Tlr-4 | GCAGCAGGTGGAATTGTATCG | TGTGCCTCCCAGAGGATT | | | Tgf-β1 | GTGTGGAGCAACATGTGGAACTCTA | TTGGTTCAGCCACTGCCGTA | | | Procollagen-α1 | GCACGAGTCACACCGGAACT | AAGGGAGCCACATCGATGAT | | | Mcp-1 | TTCCTCCACCACCATGCAG | CCAGCCGGCAACTGTGA | | | Cd14 | CCTGCCCTCTCCACCTTAGAC | TCAGTCCTCTCTCGCCCAAT | | | Zo-1 | GCTAAGAGCACAGCAATGGA | GCATGTTCAACGTTATCCAT | | | Claudin 1 | CGGGCAGATACAGTGCAAAG | ACTTCATGCCAATGGTGGAC | | | Claudin 2 | CAACTGGTGGGCTACATCCTA | CCCTTGGAAAAGCCAACCG | | | Zo-1 (human) | GAATGATGGTTGGTATGGTGCG | TCAGAAGTGTGTCTACTGTCCG | | | Caudin1
(human) | GCACATACCTTCATGTGGCTCAG | TGGAACAGAGCACAAACATGTCA | | Tnf, tumor necrosis factor; Il, interleukin; Tlr, toll-like receptor; Mcp, monocyte chemotactic protein; Cd, cluster of differentiation; Tgf, transforming growth factor; Zo, zona occludens. ## Supplementary Table 3. The RNA-guided CRISPR Cas9 system. | Cells | Genes | Sequences (5'- 3') | |----------|------------|-----------------------| | RAW264.7 | Nrf2 | GATGTGCTGGGCCGGCTGAAT | | | <i>p62</i> | GTTGGGGTGCACCATGTTTCG | | Caco-2 | Nrf2 | GCGACGGAAAGAGTATGAGC | | | p62 | GAGCCATCGCAGATCACATTG |